References

[AT89]M. P. Allen and D. J. Tildesley. Computer simulation of liquids. Clarendon Press, New York, NY, USA, 1989. ISBN 0-19-855645-4.
[AE11]D. Antypov and J. A. Elliott. On an analytical solution for the damped hertzian spring. EPL (Europhysics Letters), 94(5):50004, 2011. URL: http://people.ds.cam.ac.uk/jae1001/CUS/research/pfizer/Antypov_Elliott_EPL_2011.pdf, doi:10.1209/0295-5075/94/50004.
[BBH80]Jean-Louis Batoz, Klaus-JÜRgen Bathe, and Lee-Wing Ho. A study of three-node triangular plate bending elements. International Journal for Numerical Methods in Engineering, 15(12):1771–1812, 1980. URL: http://web.mit.edu/kjb/www/Publications_Prior_to_1998/A_Study_of_Three-Node_Triangular_Plate_Bending_Elements.pdf.
[Bli11]Anastasia Blioumi. On Linear-Elastic, Cross-Anisotropic Rock. PhD thesis, Faculty of Civil Engineering of the University of Innsbruck, 2011.
[CMD00]F. Camborde, C. Mariotti, and F. V. Donzé. Numerical study of rock and concrete behaviour by discrete element modelling. Computers and Geotechnics, 27(4):225–247, 2000. URL: http://dx.doi.org/10.1016/S0266-352X(00)00013-6.
[CBazant00]Ferhun C. Caner and Zdenek P. Bažant. Microplane model m4 for concrete. ii: algorithm and calibration. Journal of Engineering Mechanics, 126(9):954–961, 2000. URL: http://www.civil.northwestern.edu/people/bazant/PDFs/Papers/394.pdf, doi:10.1061/(ASCE)0733-9399(2000)126:9(954).
[CJB04]Ignacio Carol, Milan Jirásek, and Zdenek P. Bazant. A framework for microplane models at large strain, with application to hyperelasticity. International Journal of Solids and Structures, 41(2):511 – 557, 2004. URL: http://www.sciencedirect.com/science/article/B6VJS-49SN9H7-1/2/b86c9e49305b528a681866a1eb847c03, doi:DOI: 10.1016/S0020-7683(03)00416-5.
[COS99]Robert W Carpick, D Frank Ogletree, and Miquel Salmeron. A general equation for fitting contact area and friction vs load measurements. Journal of colloid and interface science, 211(2):395–400, 1999.
[Chr10]Mohcine Chraibi. Distance of closest approach of ellipse and line segment. Only available online, 2010. URL: http://chraibi.de/sites/default/files/mindel2.pdf.
[CS79]Peter A Cundall and Otto DL Strack. A discrete numerical model for granular assemblies. Geotechnique, 29(1):47–65, 1979.
[CBazantC03]Gianluca Cusatis, Zdenek P. Bažant, and Luigi Cedolin. Confinement-shear lattice model for concrete damage in tension and compression: i. theory. Journal of Engineering Mechanics, 129(12):1439–1448, 2003. URL: http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JENMDT000129000012001439000001&idtype=cvips&gifs=yes.
[DMT75]B.V Derjaguin, V.M Muller, and Yu.P Toporov. Effect of contact deformations on the adhesion of particles. Journal of Colloid and Interface Science, 53(2):314 – 326, 1975. URL: ftp://melmac.sd.ruhr-uni-bochum.de/Derjaguin/Derjaguin_1975.pdf, doi:http://dx.doi.org/10.1016/0021-9797(75)90018-1.
[DTS05]Aleksandar Donev, Salvatore Torquato, and Frank H Stillinger. Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles.: ii. applications to ellipses and ellipsoids. Journal of Computational Physics, 202(2):765–793, 2005. URL: ftp://crack.seismo.unr.edu/downloads/russell/doven_2005_neighbor_list_collision_driven_MD_II.PDF.
[Ebe99]David Eberly. Distance between two line segments in 3d. Technical Report, Geometric Tools, LLC, 1999. URL: http://www.geometrictools.com/Documentation/DistanceLine3Line3.pdf.
[Fel98]Carlos Felippa. Introduction to Finite Element Methods (ASEN 5007). online course at http://www.colorado.edu/engineering/cas/courses.d/IFEM.d/, 1998. URL: http://www.colorado.edu/engineering/cas/courses.d/IFEM.d/.
[Fel99a]Carlos Felippa. Advanced Finite Element Methods (ASEN 6367). online course at http://www.colorado.edu/engineering/cas/courses.d/AFEM.d/, 1999. URL: http://www.colorado.edu/engineering/cas/courses.d/AFEM.d.
[Fel99b]Carlos Felippa. Nonlinear Finite Element Methods (ASEN 6107). online course at http://www.colorado.edu/engineering/cas/courses.d/NFEM.d/, 1999. URL: http://www.colorado.edu/engineering/cas/courses.d/NFEM.d/.
[GJ06]Peter Grassl and Milan Jirásek. Damage-plastic model for concrete failure. International Journal of Solids and Structures, 43(22-23):7166–7196, 2006. URL: http://www.sciencedirect.com/science/article/B6VJS-4K8NWXK-1/2/e3a41b693b156ce13a70e44e973d505f, doi:10.1016/j.ijsolstr.2006.06.032.
[Hen03]Sébastien Hentz. Modélisation d’une Structure en Béton Armé Soumise à un Choc par la méthode des Éléments Discrets. PhD thesis, Université Grenoble 1 – Joseph Fourier, October 2003.
[HDD04]Sébastien Hentz, Laurent Daudeville, and Frédéric V. Donzé. Identification and validation of a discrete element model for concrete. Journal of Engineering Mechanics, 130(6):709–719, June 2004.
[Joh87]K.L. Johnson. Contact Mechanics. Cambridge University Press, 1987. ISBN 9780521347969. URL: http://lipenebooks.googlecode.com/svn/trunk/Contact\%20Mechanics/CONTACT\%20MECHANICS.pdf.
[JWC08]Scott M. Johnson, John R. Williams, and Benjamin K. Cook. Quaternion-based rigid body rotation integration algorithms for use in particle methods. International Journal for Numerical Methods in Engineering, 74(8):1303–1313, 2008. doi:10.1002/nme.2210.
[Kan04]Kaushalkumar Kansara. Development of membrane, plate and flat shell elements in java. PhD thesis, Virginia Polytechnic, 2004. URL: http://scholar.lib.vt.edu/theses/available/etd-05142004-234133/unrestricted/Thesis.pdf.
[KDAddettaLR01]E. Kuhl, G. D’Addetta, M. Leukart, and E. Ramm. Microplane modelling and particle modelling of cohesive-frictional materials. In Pieter Vermeer, Hans Herrmann, Stefan Luding, Wolfgang Ehlers, Stefan Diebels, and Ekkehard Ramm, editors, Continuous and Discontinuous Modelling of Cohesive-Frictional Materials, volume 568 of Lecture Notes in Physics, pages 31–46. Springer Berlin / Heidelberg, 2001. URL: http://dx.doi.org/10.1007/3-540-44424-6_3.
[LSM04]J. P. B. Leite, V. Slowik, and H. Mihashi. Computer simulation of fracture processes of concrete using mesolevel models of lattice structures. Cement and Concrete Research, 34(6):1025–1033, 2004. URL: http://www.sciencedirect.com/science/article/B6TWG-4B8X294-2/2/51f72ac6eb39cfeaf744c5980dd2fc2f, doi:DOI: 10.1016/j.cemconres.2003.11.011.
[LCYC97]Ching-Lung Liao, Ta-Peng Chang, Dong-Hwa Young, and Ching S. Chang. Stress-strain relationship for granular materials based on the hypothesis of best fit. International Journal of Solids and Structures, 34(31-32):4087 – 4100, 1997. URL: http://www.sciencedirect.com/science/article/B6VJS-3XDHMP5-10/2/9311e21c602280eb84adca51eb4dc744, doi:DOI: 10.1016/S0020-7683(97)00015-2.
[LvM03]G. Lilliu and J. G. M. van Mier. 3d lattice type fracture model for concrete. Engineering Fracture Mechanics, 70(7–8):927–941, 2003. URL: http://www.sciencedirect.com/science/article/B6V2R-47DM661-2/2/b3ec6fb13217ef0e8f7a854f6aa166de, doi:DOI: 10.1016/S0013-7944(02)00158-3.
[Lud08]Stefan Luding. Cohesive, frictional powders: contact models for tension. Granular matter, 10(4):235–246, 2008. URL: http://link.springer.com/content/pdf/10.1007\%2Fs10035-008-0099-x.pdf, doi:10.1007/s10035-008-0099-x.
[Mau92]Daniel Maugis. Adhesion of spheres: the jkr-dmt transition using a dugdale model. Journal of Colloid and Interface Science, 150(1):243–269, 1992.
[Mod13]Chiara Modenese. Numerical Study of the Mechanical Properties of Lunar Soil by the Discrete Element Method. PhD thesis, University of Oxford, 2013.
[ML81]F Molenkamp and HJ Luger. Modelling and minimization of membrane penetration effects in tests on granular soils. Geotechnique, 31(4):471–486, 1981.
[MS14]M Mostafa and MV Sivaselvan. On best-fit corotated frames for 3d continuum finite elements. International Journal for Numerical Methods in Engineering, 98(2):105–130, 2014.
[NSUK02]Kouhei Nagai, Yasuhiko Sato, Tamon Ueda, and Yoshio Kakuta. Numerical simulation of fracture process of concrete model by rigid body spring method. コンクリート工学年次論文集, 24(2):163–168, 2002. URL: http://211.10.28.144/data_pdf/24/024-01-2028.pdf.
[NB06]Natale Neto and Luca Bellucci. A new algorithm for rigid body molecular dynamics. Chemical Physics, 328(1–3):259–268, 2006. doi:10.1016/j.chemphys.2006.07.009.
[Ome99]Igor P. Omelyan. A new leapfrog integrator of rotational motion. the revised angular-momentum approach. Molecular Simulation, 1999. URL: http://arxiv.org/pdf/physics/9901025, doi:10.1080/08927029908022097.
[PRPrstgaardL96]John W Perram, John Rasmussen, Eigil Præstgaard, and Joel L Lebowitz. Ellipsoid contact potential: theory and relation to overlap potentials. Physical Review E, 54(6):6565, 1996.
[PW85]John W Perram and MS Wertheim. Statistical mechanics of hard ellipsoids. i. overlap algorithm and the contact function. Journal of Computational Physics, 58(3):409–416, 1985.
[Pop10]V.L. Popov. Contact Mechanics and Friction: Physical Principles and Applications. Books24x7.com, 2010. ISBN 9783642108037. URL: http://books.google.cz/books?id=-I8qtcJN1VIC.
[RG03]Frédéric Ragueneau and Fabrice Gatuingt. Inelastic behavior modelling of concrete in low and high strain rate dynamics. Computers & Structures, 81(12):1287–1299, 2003. Advanced Computational Models and Techniques in Dynamics. doi:10.1016/S0045-7949(03)00043-9.
[RFMD09]Jessica Rousseau, Emmanuel Frangin, Phiippe Marin, and Laurent Daudeville. Multidomain finite and discrete elements method for impact analysis of a concrete structure. Engineering structures, 43(1–2):2735–2743, 2009. URL: http://geo.hmg.inpg.fr/\%7Edaudevil/publis/engstruct2.pdf.
[Sch03]Udo D Schwarz. A generalized analytical model for the elastic deformation of an adhesive contact between a sphere and a flat surface. Journal of colloid and interface science, 261(1):99–106, 2003.
[SDD08]W. J. Shiu, F. V. Donzé, and L. Daudeville. Compaction process in concrete during missile impact: a dem analysis. Computers and Concrete, 5(4):329–342, 2008. URL: http://geo.hmg.inpg.fr/\%7Edaudevil/publis/Computers&Concrete2.pdf.
[SJS10]Jan Stránský, Milan Jirásek, and Václav Šmilauer. Macroscopic elastic properties of particle models. In Proceedings of the International Conference on Modelling and Simulation 2010, Prague. June 2010. URL: https://yade-dem.org/w/images/6/64/Stransky2010-Macroscopic-elastic-properties-of-particle-models.pdf.
[TA98]C Thornton and SJ Antony. Quasi-static deformation of particulate media. Philosophical Transactions – Royal Society of London Series, pages 2763–2782, 1998.
[Tho00]Colin Thornton. Numerical simulations of deviatoric shear deformation of granular media. Géotechnique, 50(1):43–53, 2000. doi:10.1680/geot.2000.50.1.43.
[Ton05]F Tonon. Explicit exact formulas for the 3-d tetrahedron inertia tensor in terms of its vertex coordinates. Journal of Mathematics and Statistics, 1(1):8, 2005. URL: http://thescipub.com/pdf/10.3844/jmssp.2005.8.11.
[Ver97]Adri Vervuurt. Interface Fracture in Concrete (proefschrift). Technische Universiteit Delft, 1997.
[ZIPM09]Xiaoyu Zheng, Wilder Iglesias, and Peter Palffy-Muhoray. Distance of closest approach of two arbitrary hard ellipsoids. Physical Review E, 79(5):057702, 2009.
[DAddettaKunRammHerrmann01]G.A. D’Addetta, F. Kun, E. Ramm, and H.J. Herrmann. From solids to granulates - Discrete element simulations of fracture and fragmentation processes in geomaterials. In P.A. Vermeer, S. Diebels, W. Ehlers, H.J. Herrmann, S. Luding, E. Ramm, editor, Continuous and Discontinuous Modelling of Cohesive-Frictional Materials, volume 568 of Lecture Notes in Physics, Berlin Springer Verlag, 231–+. 2001. URL: http://www.comphys.ethz.ch/hans/p/267.pdf.
[Smi10]Václav Šmilauer. Cohesive Particle Model using the Discrete Element Method on the Yade Platform. PhD thesis, Czech Technical University in Prague, Faculty of Civil Engineering & Université Grenoble I – Joseph Fourier, École doctorale I-MEP2, 2010. LaTeX sources at http://bazaar.launchpad.net/\~eudoxos/+junk/thesis/files. URL: http://tel.archives-ouvertes.fr/docs/00/50/24/02/PDF/thesis.pdf.

Tip

Got questions? Ask at ask.woodem.org. Report issues to github.