References

AT89

M. P. Allen and D. J. Tildesley. Computer simulation of liquids. Clarendon Press, New York, NY, USA, 1989. ISBN 0-19-855645-4.

AE11

D. Antypov and J. A. Elliott. On an analytical solution for the damped hertzian spring. EPL (Europhysics Letters), 94(5):50004, 2011. URL: http://people.ds.cam.ac.uk/jae1001/CUS/research/pfizer/Antypov_Elliott_EPL_2011.pdf, doi:10.1209/0295-5075/94/50004.

BBH80

Jean-Louis Batoz, Klaus-JÜRgen Bathe, and Lee-Wing Ho. A study of three-node triangular plate bending elements. International Journal for Numerical Methods in Engineering, 15(12):1771–1812, 1980. URL: http://web.mit.edu/kjb/www/Publications_Prior_to_1998/A_Study_of_Three-Node_Triangular_Plate_Bending_Elements.pdf.

Bli11

Anastasia Blioumi. On Linear-Elastic, Cross-Anisotropic Rock. PhD thesis, Faculty of Civil Engineering of the University of Innsbruck, 2011.

CMDonze00

F. Camborde, C. Mariotti, and F. V. Donzé. Numerical study of rock and concrete behaviour by discrete element modelling. Computers and Geotechnics, 27(4):225–247, 2000. URL: http://dx.doi.org/10.1016/S0266-352X(00)00013-6.

CBavzant00

Ferhun C. Caner and Zdenek P. Bažant. Microplane model m4 for concrete. ii: algorithm and calibration. Journal of Engineering Mechanics, 126(9):954–961, 2000. URL: http://www.civil.northwestern.edu/people/bazant/PDFs/Papers/394.pdf, doi:10.1061/(ASCE)0733-9399(2000)126:9(954).

CJirasekB04

Ignacio Carol, Milan Jirásek, and Zdenek P. Bazant. A framework for microplane models at large strain, with application to hyperelasticity. International Journal of Solids and Structures, 41(2):511 – 557, 2004. URL: http://www.sciencedirect.com/science/article/B6VJS-49SN9H7-1/2/b86c9e49305b528a681866a1eb847c03, doi:DOI: 10.1016/S0020-7683(03)00416-5.

COS99

Robert W Carpick, D Frank Ogletree, and Miquel Salmeron. A general equation for fitting contact area and friction vs load measurements. Journal of colloid and interface science, 211(2):395–400, 1999.

Chr10

Mohcine Chraibi. Distance of closest approach of ellipse and line segment. Only available online, 2010. URL: http://chraibi.de/sites/default/files/mindel2.pdf.

CS79

Peter A Cundall and Otto DL Strack. A discrete numerical model for granular assemblies. Geotechnique, 29(1):47–65, 1979.

CBavzantC03

Gianluca Cusatis, Zdenek P. Bažant, and Luigi Cedolin. Confinement-shear lattice model for concrete damage in tension and compression: i. theory. Journal of Engineering Mechanics, 129(12):1439–1448, 2003. URL: http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=JENMDT000129000012001439000001&idtype=cvips&gifs=yes.

DMT75

B.V Derjaguin, V.M Muller, and Yu.P Toporov. Effect of contact deformations on the adhesion of particles. Journal of Colloid and Interface Science, 53(2):314 – 326, 1975. URL: ftp://melmac.sd.ruhr-uni-bochum.de/Derjaguin/Derjaguin_1975.pdf, doi:http://dx.doi.org/10.1016/0021-9797(75)90018-1.

DTS05

Aleksandar Donev, Salvatore Torquato, and Frank H Stillinger. Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles.: ii. applications to ellipses and ellipsoids. Journal of Computational Physics, 202(2):765–793, 2005. URL: ftp://crack.seismo.unr.edu/downloads/russell/doven_2005_neighbor_list_collision_driven_MD_II.PDF.

Ebe99

David Eberly. Distance between two line segments in 3d. Technical Report, Geometric Tools, LLC, 1999. URL: http://www.geometrictools.com/Documentation/DistanceLine3Line3.pdf.

Fel98

Carlos Felippa. Introduction to Finite Element Methods (ASEN 5007). online course at http://www.colorado.edu/engineering/cas/courses.d/IFEM.d/, 1998. URL: http://www.colorado.edu/engineering/cas/courses.d/IFEM.d/.

Fel99a

Carlos Felippa. Advanced Finite Element Methods (ASEN 6367). online course at http://www.colorado.edu/engineering/cas/courses.d/AFEM.d/, 1999. URL: http://www.colorado.edu/engineering/cas/courses.d/AFEM.d.

Fel99b

Carlos Felippa. Nonlinear Finite Element Methods (ASEN 6107). online course at http://www.colorado.edu/engineering/cas/courses.d/NFEM.d/, 1999. URL: http://www.colorado.edu/engineering/cas/courses.d/NFEM.d/.

GJ06

Peter Grassl and Milan Jirásek. Damage-plastic model for concrete failure. International Journal of Solids and Structures, 43(22-23):7166–7196, 2006. URL: http://www.sciencedirect.com/science/article/B6VJS-4K8NWXK-1/2/e3a41b693b156ce13a70e44e973d505f, doi:10.1016/j.ijsolstr.2006.06.032.

Hen03

Sébastien Hentz. Modélisation d’une Structure en Béton Armé Soumise à un Choc par la méthode des Éléments Discrets. PhD thesis, Université Grenoble 1 – Joseph Fourier, October 2003.

HDD04

Sébastien Hentz, Laurent Daudeville, and Frédéric V. Donzé. Identification and validation of a discrete element model for concrete. Journal of Engineering Mechanics, 130(6):709–719, June 2004.

Joh87

K.L. Johnson. Contact Mechanics. Cambridge University Press, 1987. ISBN 9780521347969. URL: http://lipenebooks.googlecode.com/svn/trunk/Contact\%20Mechanics/CONTACT\%20MECHANICS.pdf.

JWC08

Scott M. Johnson, John R. Williams, and Benjamin K. Cook. Quaternion-based rigid body rotation integration algorithms for use in particle methods. International Journal for Numerical Methods in Engineering, 74(8):1303–1313, 2008. doi:10.1002/nme.2210.

Kan04

Kaushalkumar Kansara. Development of membrane, plate and flat shell elements in java. PhD thesis, Virginia Polytechnic, 2004. URL: http://scholar.lib.vt.edu/theses/available/etd-05142004-234133/unrestricted/Thesis.pdf.

KDAddettaLR01

E. Kuhl, G. D’Addetta, M. Leukart, and E. Ramm. Microplane modelling and particle modelling of cohesive-frictional materials. In Pieter Vermeer, Hans Herrmann, Stefan Luding, Wolfgang Ehlers, Stefan Diebels, and Ekkehard Ramm, editors, Continuous and Discontinuous Modelling of Cohesive-Frictional Materials, volume 568 of Lecture Notes in Physics, pages 31–46. Springer Berlin / Heidelberg, 2001. URL: http://dx.doi.org/10.1007/3-540-44424-6_3.

LSM04

J. P. B. Leite, V. Slowik, and H. Mihashi. Computer simulation of fracture processes of concrete using mesolevel models of lattice structures. Cement and Concrete Research, 34(6):1025–1033, 2004. URL: http://www.sciencedirect.com/science/article/B6TWG-4B8X294-2/2/51f72ac6eb39cfeaf744c5980dd2fc2f, doi:DOI: 10.1016/j.cemconres.2003.11.011.

LCYC97

Ching-Lung Liao, Ta-Peng Chang, Dong-Hwa Young, and Ching S. Chang. Stress-strain relationship for granular materials based on the hypothesis of best fit. International Journal of Solids and Structures, 34(31-32):4087 – 4100, 1997. URL: http://www.sciencedirect.com/science/article/B6VJS-3XDHMP5-10/2/9311e21c602280eb84adca51eb4dc744, doi:DOI: 10.1016/S0020-7683(97)00015-2.

LvM03

G. Lilliu and J. G. M. van Mier. 3d lattice type fracture model for concrete. Engineering Fracture Mechanics, 70(7–8):927–941, 2003. URL: http://www.sciencedirect.com/science/article/B6V2R-47DM661-2/2/b3ec6fb13217ef0e8f7a854f6aa166de, doi:DOI: 10.1016/S0013-7944(02)00158-3.

Lud08

Stefan Luding. Cohesive, frictional powders: contact models for tension. Granular matter, 10(4):235–246, 2008. URL: http://link.springer.com/content/pdf/10.1007\%2Fs10035-008-0099-x.pdf, doi:10.1007/s10035-008-0099-x.

Mau92

Daniel Maugis. Adhesion of spheres: the jkr-dmt transition using a dugdale model. Journal of Colloid and Interface Science, 150(1):243–269, 1992.

Mod13

Chiara Modenese. Numerical Study of the Mechanical Properties of Lunar Soil by the Discrete Element Method. PhD thesis, University of Oxford, 2013.

ML81

F Molenkamp and HJ Luger. Modelling and minimization of membrane penetration effects in tests on granular soils. Geotechnique, 31(4):471–486, 1981.

MS14

M Mostafa and MV Sivaselvan. On best-fit corotated frames for 3d continuum finite elements. International Journal for Numerical Methods in Engineering, 98(2):105–130, 2014.

NSUK02

Kouhei Nagai, Yasuhiko Sato, Tamon Ueda, and Yoshio Kakuta. Numerical simulation of fracture process of concrete model by rigid body spring method. コンクリート工学年次論文集, 24(2):163–168, 2002. URL: http://211.10.28.144/data_pdf/24/024-01-2028.pdf.

NB06

Natale Neto and Luca Bellucci. A new algorithm for rigid body molecular dynamics. Chemical Physics, 328(1–3):259–268, 2006. doi:10.1016/j.chemphys.2006.07.009.

Ome99

Igor P. Omelyan. A new leapfrog integrator of rotational motion. the revised angular-momentum approach. Molecular Simulation, 1999. URL: http://arxiv.org/pdf/physics/9901025, doi:10.1080/08927029908022097.

PRPraestgaardL96

John W Perram, John Rasmussen, Eigil Præstgaard, and Joel L Lebowitz. Ellipsoid contact potential: theory and relation to overlap potentials. Physical Review E, 54(6):6565, 1996.

PW85

John W Perram and MS Wertheim. Statistical mechanics of hard ellipsoids. i. overlap algorithm and the contact function. Journal of Computational Physics, 58(3):409–416, 1985.

Pop10

V.L. Popov. Contact Mechanics and Friction: Physical Principles and Applications. Books24x7.com, 2010. ISBN 9783642108037. URL: http://books.google.cz/books?id=-I8qtcJN1VIC.

RG03

Frédéric Ragueneau and Fabrice Gatuingt. Inelastic behavior modelling of concrete in low and high strain rate dynamics. Computers & Structures, 81(12):1287–1299, 2003. Advanced Computational Models and Techniques in Dynamics. doi:10.1016/S0045-7949(03)00043-9.

RFMD09

Jessica Rousseau, Emmanuel Frangin, Phiippe Marin, and Laurent Daudeville. Multidomain finite and discrete elements method for impact analysis of a concrete structure. Engineering structures, 43(1–2):2735–2743, 2009. URL: http://geo.hmg.inpg.fr/\%7Edaudevil/publis/engstruct2.pdf.

Sch03

Udo D Schwarz. A generalized analytical model for the elastic deformation of an adhesive contact between a sphere and a flat surface. Journal of colloid and interface science, 261(1):99–106, 2003.

SDonzeD08

W. J. Shiu, F. V. Donzé, and L. Daudeville. Compaction process in concrete during missile impact: a dem analysis. Computers and Concrete, 5(4):329–342, 2008. URL: http://geo.hmg.inpg.fr/\%7Edaudevil/publis/Computers&Concrete2.pdf.

SJS10

Jan Stránský, Milan Jirásek, and Václav Šmilauer. Macroscopic elastic properties of particle models. In Proceedings of the International Conference on Modelling and Simulation 2010, Prague. June 2010. URL: https://yade-dem.org/w/images/6/64/Stransky2010-Macroscopic-elastic-properties-of-particle-models.pdf.

TA98

C Thornton and SJ Antony. Quasi-static deformation of particulate media. Philosophical Transactions – Royal Society of London Series, pages 2763–2782, 1998.

Tho00

Colin Thornton. Numerical simulations of deviatoric shear deformation of granular media. Géotechnique, 50(1):43–53, 2000. doi:10.1680/geot.2000.50.1.43.

Ton05

F Tonon. Explicit exact formulas for the 3-d tetrahedron inertia tensor in terms of its vertex coordinates. Journal of Mathematics and Statistics, 1(1):8, 2005. URL: http://thescipub.com/pdf/10.3844/jmssp.2005.8.11.

Ver97

Adri Vervuurt. Interface Fracture in Concrete (proefschrift). Technische Universiteit Delft, 1997.

ZIPM09

Xiaoyu Zheng, Wilder Iglesias, and Peter Palffy-Muhoray. Distance of closest approach of two arbitrary hard ellipsoids. Physical Review E, 79(5):057702, 2009.

DAddettaKunRammHerrmann01

G.A. D’Addetta, F. Kun, E. Ramm, and H.J. Herrmann. From solids to granulates - Discrete element simulations of fracture and fragmentation processes in geomaterials. In P.A. Vermeer, S. Diebels, W. Ehlers, H.J. Herrmann, S. Luding, E. Ramm, editor, Continuous and Discontinuous Modelling of Cohesive-Frictional Materials, volume 568 of Lecture Notes in Physics, Berlin Springer Verlag, 231–+. 2001. URL: http://www.comphys.ethz.ch/hans/p/267.pdf.

Smi10

Václav Šmilauer. Cohesive Particle Model using the Discrete Element Method on the Yade Platform. PhD thesis, Czech Technical University in Prague, Faculty of Civil Engineering & Université Grenoble I – Joseph Fourier, École doctorale I-MEP2, 2010. LaTeX sources at http://bazaar.launchpad.net/\~eudoxos/+junk/thesis/files. URL: http://tel.archives-ouvertes.fr/docs/00/50/24/02/PDF/thesis.pdf.

Tip

Report issues or inclarities to github.